Maximizing your backend potential

Pragmatic
Spring

by Marcus Held

Marcus Held

Programming since 2004
12 years+ on the JVM

Freelancer, Leader, Speaker, Blogger, Father of two

+
Be excited for:

0 02 03

The Pragmatic Design by Contract Jug(]JIing the Real
Programmer Preconditions World
What is this about? How Spring supports you Features that helps to

decouple

The Pragmatic
Programmer

Early adapter / fast adapter
Inquisitive

Critical thinker

Realistic

Jack of all trades

Care about your craft

-

DeSign by Preconditions
C o nt ra Ct Which requirements apply to execute the routine?

Postconditions

What is the routine doing?

Described by Bertrand Meyer in .)
1997 Class invariants

Document (and agree) on the rights and responsibilities of a

. _ From the perspective of a caller — the class ensures that
software module/service/class/function.

this condition is always true.

Preconditions

What's correct?
The caller doesn't know — without checking the code

Possible Solutions:

« Make the type explicit

« Add parameter documentation

« Do an assertion in applyDiscount

public void applyTenPercentDiscount(UUID orderId) {
Order order = orderRepository.findById(orderId).orElseThrow();

order.applyDiscount(10);
order.applyDiscount(0.1);

public void applyDiscount(double discount) {
amountToCharge -= amountToCharge * discount;

Spring Assert

Already on your classpath

Consistency with the framework
Correct ExceptionTypes for asserts
MessageSupliers to guard the message

public void applyDiscount(double discount) {
Assert.isTrue(expression: discount > 0 && discount < 1,
() — "The given discount ist not between 0 and 1");
Assert.state(ion: status = OrderStatus.0OPEN,

() — "Can't apply discount to " + this + " because it's not open");
amountToCharge -= amountToCharge * discount;

Method Securit

Many routines require permissions to run

Authorization is a cross cutting concern and a good
candidate to apply AOP

Also: Every routine has an (implicit) security contract

@PreAuthorize("hasAuthority('APPLY DISCOUNT')")
public void applyDiscount(double discount) {

@Test
@WithMockUser(roles = {"ADMIN"})

public void adminCanApplyDiscount() {

Order order = new Order(amountTc

order.applyDiscount(0.10);

Assertions.assertEquals(expected:

Charge: 10.00) ;

9.00, order.getAmountToCharge());

Method Security

@PreAuthorize, @PostAuthorize, @Secured,
@RolesAllowed , @PreFilter, @PostFilter

Unit tests to test business logic are not cluttered by
obligatory security checks

Can be combined in meta annotations

I Spring AOP proxying rules apply
I SecurityContext is thread-bound

Juqgling the
RegPWgrld

‘Computers have to integrate into our world, not the other
way around. And our world is messy: things are
constantly happening, stuff gets moved around, we
change our minds, And the applications we write
somehow have to work out what to do.”

Our applications must be responsive to change

private final ApplicationEventPublisher publisher;

public void applyTenPercentDiscount(UUID orderId) {
Order order = orderRepository.findById(orderId).orElseThrow();

Application order.applyDiscount(8.1);

publisher.publishEvent(

Eve ntS new DiscountAppliedEvent(orderId, appliedDiscount: 0.1)

);

}
Part of Spring core framework @EventListener
Works with POJOs public void recordDiscount(DiscountAppliedEvent event) {...}
Testing support
Transaction support public record DiscountAppliedEvent(UUID orderId) { }
@Async support
@Order support

@TransactionalEventListener
public void recordDiscount(DiscountAppliedEvent event) {...}

AN

Conditional listeners

@EventListener(condition = "event.appliedDiscount() > 0.5")
public void alarmOnLargeDiscounts(DiscountAppliedEvent event) {...}

- Al
.
L

IﬁbOrreot St t|

.

Imagine: You ask the waiter in the restaurant: At the same time, on the other side of the
‘Is the 1995 Cabernet Sauvignon available?” restaurant, someone else also asks for the
Waiter looks to the bar wine.

“You are lucky, there's one bottle left”
The problem here: shared state.

sacﬁo

public void placeOrder(UUID productId) {
Product product = productRepository.findById(productId).orElseThrow();

product.decreaseStock();

L—

@Transactional
public void placeOrder(UUID productId)
Product product = productRepository.findById(productId).orElseThrow();

product.decreaseStock();

e

Spring

T . REQUIRED Transaction (———
Caller ‘il”TrransactionaI method 17’ Transactional method 2 ‘
Propagations / /
|solation Levels Transaction created Method 2 executes in the existing transaction.
Specify rollback scenarios COTZmL“ed or rolled back as
neede

readOnly flag

Isolation Level Dirty Read Nonrepeatable Read Phantom Read Serialization Anomaly

Read uncommitted Allowed, but notin PG Possible Possible Possible

Read committed Not possible Possible Possible Possible

Repeatable read Not possible Not possible Allowed, but not in PG Possible

Serializable Not possible Not possible Not possible Not possible

By default, every Bean is a singleton
Prototype: New object per invocation

S C O p e S RequestScope: New object per request

Implement the scope interface for your needs

= -
B b [
T
2 sy f,}"r”/
L ’f P 2
L A 7Y .

Thanks for
Listening!

New: Spring Performance Workshop

SWSHANCE

marcus@backendhance.com) .. .
e Maximizing your backend potential

https://backendhance.com

+49 15171 / 449 351 67/
linkedin.com/in/marcus-held/

